
L I T E R A T U R E  C I T E D  

1. A . V .  Gurevich ,  L. P. P i taevsk i i ,  and V. V. Smirnova ,  Ionosf. Aerod in . -Usp .  Fiz. Nauk, 9_9.9 , I~b. 1 (1969). 
2. A . V .  Gurevich,  L. V. Pa r i i skaya ,  and L. P. P i taevski i ,  "S imi la r i ty  motion of a r a r e f i e d  p l a s m a , "  Zh. 

Eksp.  Teor .  Fiz. ,  ~ No. 2(8) (1965). 
3. A . V .  Gurevich,  L. V. Pa r i i skaya ,  and L. P. P i t aevskaya ,  "S imi la r i ty  motion of a r a r e f i e d  p la sma .  II ," 

Zh. Eksp.  Teor .  Fiz. ,  ~ No. 3 (1968). 
4. M.V.  Maslennikov and Yu. S. Sigov, "A d i sc r e t e  m a s s  model in r a r e f i e d  p l a s m a  flow over  bod ies , "  

Dokl. Akad. Nauk SSSR, 159, No. 5 (1964). 
5. S . G .  Alikhanov, V. G. Belan,  G. N. Kichigin, and P.  Z. Chebotaev,  "Expansion of p l a s m a  into vacuum and 

flow of a co l l i s ion less  p l a s m a  over  a p la te , "  Zh. Eksp.  Teor .  Fiz . ,  59, No. 6 (1970). 
6. M.V.  IVlaslennikov, Yu. S. Sigov, I. N. Fadeev,  and G. P. Churkina,  "Two-d imens iona l  p r o b l e m  of 

fo rmat ion  of the pe r tu rbed  zone in supersonic  flow of a r a r e f i e d  p l a s m a  over  a body,"  P rep r [n t  No. 81, 
IPM Akad. Nauk SSSR, Moscow (1974). 

7. V. Liu and H. Jew,  Raref ied Gas Dynamics  (edited by C. L.  Brudin),  New York  (1967). 
8. A . V .  Gurevich and L. P. P i t aevsk i i  (Pi taevsky),  " H y p e r s 0 n i e b o d y m o t i o n t h r o u g h r a r e f i e d p l a s m a , "  Phys .  

Rev .  Le t t . ,  15, No. 8 (1965). 
9. S. L Anis imov and Yu. V. Medvedev, "Kinetics of expansion of a p l a s m a  into vacuum,"  P rep r in t  of L. D. 

Landau  Ins t .  Teo r .  Fiz .  Akad. Nauk SSSR, Chernogolovka (1977). 
10. W . D .  Hayes and R. F. Probs te in  (editors) ,  Hypersonic  Flow Theory,  Academic  P r e s s  (1967). 
11. P.  Morse ,  "Modeling of a mul t id imens iona l  p l a s m a  by means  of the p a r t i c l e - i n - c e l l  method,"  in: 

Numer ica l  Methods in P l a s m a  Phys ics  [Russian t rans la t ion] ,  Mir ,  Moscow (1974). 

A C A L C U L A T I O N  O F  T H E  P A R A M E T E R S  O F  T H E  

J E T  F O R M E D  I N  T H E  C O L L A P S E  O F  A B U B B L E  

HIGH-SPEED 

O. V. V o i n o v  UDC 532.529.6 

As is known, the col lapse  of vapor  bubbles in a liquid can cause  the intensive des t ruc t ion  of 
solid boundary su r faces .  Expe r imen ta l  and theore t ica l  invest igat ions of  bubble col lapse  have 
led to the conclusion that  the su r face  of a bubble can de fo rm and a liquid je t  d i rec ted  toward 
the solid su r face  can fo rm in the p r o c e s s  [1, 2]. In the theore t ica l  r e p o r t s  [3, 4] too low ie t  
ve loci t ies  were  obtained,  inadequate to explain the des t ruc t ion  of the su r face  in a single 
impact .  In [5] it  was found as a r e s u l t  of  numer i ca l  calculat ions that  the fo rmat ion  of jets: 
pos se s s ing  enormous  ve loc i t ies  is poss ib le .  It was also found that two fundamenta l ly  d i f ferent  
s chemes  of je t  fo rmat ion  a r e  poss ib le  in the col lapse  of a bubble near  a wall.  The t rans i t ion  
f r o m  one scheme to the o ther  occu r s  upon a r e l a t ive ly  s m a l l  change in the initial  shape of the 
bubble. In the p r e s e n t  r e p o r t  we inves t iga te  the case  of suff icient ly smal l  init ial  de fo rmat ions  
of a bubble when the reg ion  occupied by the bubble r e m a i n s  s imply  connected during the 
fo rmat ion  of the jet;  i .e . ,  the separa t ion  of a smal l  bubble f r o m  the bubble does not occur .  In 
the case  of the second scheme of bubble col lapse  near  a wall the connectedness  of  the f ree  
boundary is d is rupted and a smal l  bubble s epa ra t e s  off during the fo rmat ion  of the jet.  

In an ideal  i ncompres s ib l e  liquid, bounded by a plane solid su r f ace  and s ta t ionary  a t  infinity, the re  is a 
bubble. At the boundary of the bubble the liquid p r e s s u r e  is p= 0 and a t  infinity p = p ~ .  At the s ta r t ing  t ime  
t = 0  the shape and posi t ion of the bubble a r e  given. It is r equ i r ed  to de t e rmine  the motion of the liquid and the 
shape of the bubble boundary S at t > 0. 

The motion of the liquid was calcula ted numer i ca l ly  on a BESM-6 compute r  using the methodl of c a l -  
culating the potent ia l  mot ions  of a liquid with f r ee  boundar ies  suggested in [6]. In the a x i s y m m e t r i c  p ro b l em 
the bubble contour is r e p r e s e n t e d  with the help of in terpolat ion on a l a rge  number  of r e f e r e n c e  points ( f rom 
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17 to 41). The unknown quantities a re  the coordinates  of the r e fe rence  points and the values of the velocity 
potential at  these points. The nonsteady problem was solved by a special ly developed explicit  scheme.  At each 
step in t ime an integral  equation of the f i r s t  kind was solved for the re la t ive  normal  veloci ty of the liquid at the 
contour at  the values of the potential known at a fixed time. 

The calculat ions were  made  in the dimensionless  var iables  of length x and time t ,  connected in the 
following way with the cor responding  dimensional  var iables  : 

�9 ' = t '  = taV /p , = v V p j p ,  

where v is the d imens ionless  veloci ty;  a is the s ize  of the bubble. 

Smooth initial deformation of the bubble was allowed for.  This deformation can develop owing to the 
p resence  of p r e s s u r e  gradients  in a s t r eam,  owing to a s y m m e t r y  of the flow near  the bubble, growing near the 

'walt ,  and o the r  fac tors .  It is a s sumed  that the bubble has the ~shape of an ell ipsoid of rota t ion with semiaxes 
eqt/at to a and b. The semiaxis  a is perpendicular  to the wall. The solution of the problem depends on the ra t io  
X =bin of the semiaxes  and on the distance z0 o f  the center  of the ell ipsoid from the plane. 

Calculations of the p rocess  of bubble collapse were  made in a wide range  of variat ion of the distance z0 
f rom the plane. Tee solution o f  the p rob lem of the col lapse  of a spher ical  bubble (X = 1) with z0 = 1.025, when the 
bubble is p rac t i ca l ly  in contact  with the wall, is presented in Fig. 1. The watl corresponds to the horizontal  
line. The posit ions 1-11 of  the bubble boundary a r e  shown at  the success ive  t imes t = 0 ,  0.76, O.935, O.995, 
1.015, 1.02906, 1.04281, 1.05406, 1.06656, 1.07656, and 1.08656. It is seen that a jet moving toward the solid 
boundary  is formed in the p rocess  of  collapse.  The veloci ty  of the tip of the jet  (later called s imply the jet 
velocity) grows sharp ly  as the cavi ty boundary passes  f rom position 3 to position 5 and then the jet velocity 
r ema ins  p rac t icaUy constant.  Posit ion 5 cor responds  to the appearance of the initial section of the jet, when 
the p ress ing  in of the su r face  is v e r y  small .  A ve ry  smal l  separa t ion of the acce lera t ing  mass  of liquid f rom 
the su r face  of the bubble is sufficient for  its veloci ty  to cease  to grow. 

The resu l t s  presented in Fig. 1 agree  with the resu l t s  of [41. The difference consis ts  in the absence of 
an i r r egu la r  surge at  the tip of the jet. The problem of the col lapse of a spherical  bubble near a wall was also 
solved in [7]. The resu l t s  of  this r e p o r t  differ ve ry  s t rongly f rom those presented above and f rom the resul ts  
of [4, 5]. The format ion  of the jet  occu r s  a t  the moment  when the bUbble has twice as g rea t  a s ize,  and the 
d iameter  of ~he jet  proves  to be considerably  smal l e r .  Smoothing in a calculation over some strongly unstable 
difference scheme is used in [7]. This may be one of the reasons  for the d i sagreement  of the r e su l t s ;  another 
r ea son  evidently is the s l rong dependence of the resu l t s  on the initial shape of the bubble and the resul t ing 
increased  demands on the a c c u r a c y  of the calculations.  

With an i n c r e a s e i n  the initial distance z0 of a spher ical  bubble f rom the plane the minimum bubble s ize  
a t  which the format ion  of a je t  occu r s  dec reases  while the jet  ve loci ty  v increases  (Fig. 2). 
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The allowance for the initial (t = 0) deformation of the cavity is of the g rea tes t  interest ,  as follows f rom 
[5]. Even a small  deformation essent ia l ly  a l ters  the p rocess  of jet formation,  which is shown in Fig. 3 in the 
case  of a degree of deformation • = 1.1. The distance f rom the plane is plotted ver t ica l Iy  and the distance f rom 
the axis of s y m m e t r y  is plotted horizontally~ The positions 1-7 of the bubble boundary correspond to the 
times t = 1.08344, t.08578, 1.08734, 1.08859~ 1o08984, 1.09047, and 1.09203. The jet  veloci ty grows about two- 
fold as the free boundary passes  f rom position 1 to position 4 and then it remains  prac t ica l Iy  constant. 

The calculations were made with different degrees of bunching of the re fe rence  points in the region of the 
contour where the appearance of a jet is likely (see Fig. 3). Variant  I cor responds  to a distance x2=0.006047 
between the point nea res t  the pole and the axis of s y m m e t r y  at t = 0 ;  var iant  II cor responds  to x2=0.00346; 
var ian t  III cor responds  to x2 = 0.0025978. It is seen f rom the data of Fig. 3 that the resu l t s  of calculations with 
considerably different a r rangements  of the r e f e r ence  points along the length of the contour coincide. Tais 
additionally confi rms the co r r ec tnes s  of the calculations.  A control  of the accuracy  of the calculations was 
also made at each step by testing the conservat ion  of energy of the system.  

In the case  of an initial deformation • = 1.175 the nonlinear p rocess  of bubble col lapse gives an ahnos t  
needle-shaped jet. The process  of bubble col lapse and the veloci ty profile at  the free boundary at  the f i r s t  
moment  af ter  the separat ion of  the initial pa r t  of the jet f rom it at  t = 1.14702 a r e  represented  in Fig. 4. The 
veloci ty  maximum at the center  is ve ry  sharply  expressed.  The calculations are  grea t ly  hindered by the small  
scale of the jet which forms.  

The cha rac te r i s t i c  thickness d of the jet depends s t rongly on the initial degree of deformation X (Fig. 5). 
The quantity d is defined as the width of the jet  at  half its length at the moment  when the amplitude of the 
p ress ing  in of the surface  of the bubble ver t ica l ly  (the length of the jet) compr i ses  a value on the order  of d. 
Evidently, the thickness d of  the jet  is reduced to zero  somewhere  in the region of X ~ 1.175. 
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2he  t ime in which the main growth of the je t  veloci ty occurs  is an important  charac te r i s t i c  of the process  

of  generat ion of  the jet. We define the cha rac t e r i s t i c  time of generat ion of a jet as the t ime in which the jet 
veloci ty  grows f r o m  0.45v to 0.9v, where v is the maximum value of the velocity.  The generat ion time T 
depends s t rongly on the degree  o f  deformat ion X of the bubble (see Fig. 5). It is seen that as ~ approaches a 
value of  X ~ 1.2 the generat ion t ime dec reases  sharply  and proves to be an o rde r  of magnitude less than when 
~=1 .  

The dependence of  the je t  veloci ty on the degree of deformation (Fig. 6) is of the g res te s t  interest .  For a 
prola te  ellipsoid of rota t ion (X < 1) the values of the je t  velocity a re  smal le r  than in the case of a sphere,  and 
for  an oblate ell ipsoid they a r e  l a rge r .  

The increase  in veloci ty  with an increase  in X is so intense that a value of v = 11.9 with • = 1 (spherical 
bubble) proves  to be complete ly  episodic,  not cha rac te r i s t i c  of the problem of the col lapse of a slightly 
deformed bubble. With the approach to X ~ 1.2 the jet  velocity grows sharply and evidently goes to infinity. 
For values of v ~ 100, cor responding  to veloci t ies  of about 1 km/sec  for water at p~ = 1 atm and p = 1 g/cm 3, the 
compress ib i l i ty  of the water mus t  be taken into account.  In the impact  of a water jet moving with a velocity of 
such an o r d e r  against  a solid surface  an impact  p r e s s u r e  of up to severa l  tens of thousands of a tmospheres  may 
be reached.  

F rom qualitative considerat ions  it can be concluded that in the generation of a jet  the pa rame te r  7x~d 
should r e m a i n  about the same in different  var iants .  Actually, the quantity rv/d remains  within limits of 2-4 
when the veloci ty  var ies  a lmos t  10-fold and the generat ion time of the jet  var ies  100-fold. 

A question can a r i s e :  Does sur face  tension affect  the p rocess  of generation of a jet? Est imates  show 
that the surface  tension a is important  if v"-d ~ ,~/(cp~i where v and d a re  the dimensionless  velocity and 
diameter  of the jet ;  a is the size of the bubble. The quantity v2d takes values of 29 when X = 1.28 and 33 when 
• = 1.15 and 1.175, respect ively~ i.e.,  v2d remains  a lmost  constant  with an increase  in ~. Consequently, if for 
a given bubble size the sur face  tension was not impor tant  in the case  of the formation of a broad jet during the 
col lapse of a spher ica l  bubble, then it a lso will not be important  in the case of the formation of an anomalously 
thin jet  because  of its high veloci t ies  (high p r e s s u r e s  develop in the small  region where the jet  is formed). 

The resu l t s  presented conf i rm the conclusion of [5] that there is a cr i t ica l  value of the initial degree of 
deformation • = X , ~  1.2 upon approaching which the veloci ty  of the forming jet grows and its thickness 
decreases .  2he jet  veloci ty goes to infinity at  • -- •  and the point X = •  is singular.  

The col lapse of a bubble with a deformation g rea te r  than cr i t ica l  takes place by the scheme found in [5]. 
A small  je t  is formed as a secondary  jet  as a r e su l t  of the collapse of an annular jet, cutting off a small  bubble 
f rom the bubble. 
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ASYMPTOTIC THEORY OF 

BY A SONIC FLOW 

T H E  F L O W  A R O U N D  A N  O B S T A C L E  

A.  L.  B r e z h n e v  a n d  I .  A.  C h e r n o v  UDC 533.6.01t 

The f i r s t  invest igat ion of the p r o b l e m  of the flow around an obs tac le  by a gas flow whose ve loc i ty  
is equal to the speed of sound at  infinity was ca r r i ed  out in [1, 2], where  i t  is shown in pa r t i cu l a r  
that  the pr inc ipa l  t e r m  of the app rop r i a t e  asympto t ic  expansion is a s e l f - s i m i l a r  solution of 
T r i c o m i ' s  equation, to which the p r o b l e m  reduces  in the f i r s t  approximat ion  upon a hodographic 
invest igat ion.  The r e q u i r e m e n t  that  the s t r e a m  function be analyt ic  as  a function of the hodo- 
graphic  va r i ab l e s  on the l imit ing c h a r a c t e r i s t i c  was an impor tan t  condition de termining  the 
se lec t ion  of the s e l f - s i m i l a r i t y  exponent n (xy-n is an invar ian t  of  the s e l f - s i m i l a r  solution)o 
The analyt ic  na ture  of the ve loc i ty  field e v e r y w h e r e  in the flow above the shock waves ,  which 
a r i s e  f rom necess i ty  upon flow around an obs tac le ,  follows f r o m  this condition. The la t ter  was 
found in [3], where  one of the b ranches  of the solution obtained in [1] was used in the region 
behind the shock waves .  The pr inc ipa l  and subsequent  t e r m s  of the asympto t ic  expansion 
descr ib ing  a sonic flow far  f r o m  an obs tac le  were  d iscussed in [4], where the author  r e s t r i c t e d  
h imse l f  to T r i c o m i ' s  equation. Each t e r m  of the s e r i e s  const ructed in [4] contains an a r b i t r a r y  
coeff ic ient  (we will ca l l  it a shape p a r a m e t e r )  which is not de te rmined  within the f r a m e w o r k  of 
a local  invest igat ion,  and cons idera t ion  of the p rob l em of flow around a given obs tac le  as a 
whole is n e c e s s a r y  in o rde r  to de te rmine  these  shape p a r a m e t e r s .  It follows f r o m  the r e su l t s  of 
[4] that  the p rob l em  of higher approx imat ions  to the solution of [1] coincides with the p r o b l e m  of 
cons t ruc t ing  a flow in the neighborhood of the center  of a Laval  nozzle  with an analyt ic  ve loc i ty  
dis t r ibut ion along the longitudinal axis (a M e y e r - t y p e  flow). Along with the M e y e r - t y p e  flow in 
the vicinity of the nozzle center, which corresponds to a self-similarity exponent n--2, two other 
types of flow are asymptotically possible with n=3 and II, given in [5]. The appropriate 
solutions are written out in algebraic functions in [6]. The results of [5] show that the condition 
that the velocity vector be analytic on the limiting characteristic in the flow plane is broader than 
the condition that the stream function be analytic as a function of the hodographic variables, which 
is employed in [i, 2, 4]. Therefore, the necessity has arisen of reconsidering the problem of 
higher approximations for the obstacle solution of F. I. Frankl'. It has proved possible for the 
region in front of the shock waves to use a series which is more general than in [4], which 
implies the inclusion of an additional set of shape parameters. The solution is given in the hodo- 
graph plane in the form of the sum of two terms; the series discussed in [4] corresponds to the 
first one, and the series generated by the self-similar solution with n=3 or with n = ii cor- 
responds to the second one. 

1. Two dimensional  i r ro ta t iona l  flows of an ideal p e r f e c t  gas a r e  descr ibed  in the t ransonic  approx i -  
mat ion by the equations [7] 

--mt~ 4- ~'~j = O, ~!j -- v x = O, (1.1) 

where  x and y a r e  the reduced  C a r t e s i a n  coordina tes  and u and v a r e  the d imens ion less  components  of p e r -  
turbat ions  of a un i fo rm sonic flow. 
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